Mastermind critically regulates Notch-mediated lymphoid cell fate decisions.
نویسندگان
چکیده
During lymphoid development, Notch1 plays a critical role in the T-cell/B-cell lineage decision, while Notch2 is essential for marginal zone B-cell (MZB) development. Notch pathway activation induces translocation of intracellular Notch (ICN) to the nucleus, where it interacts with the transcription factor CSL (CBF1/RBP-Jk, Suppressor of Hairless, Lag-1). In vitro, ICN binds Mastermind-like proteins, which act as potent Notch coactivators. Three MAML family members (MAML1-3) have been identified in mammals, but their importance in vivo is unknown. To investigate the function of MAMLs in hematopoietic development, we introduced a dominant negative (DN) mutant of MAML1, capable of inhibiting Notch1-4, in murine hematopoietic stem cells. DNMAML1 resulted in early inhibition of T-cell development and the appearance of intrathymic B cells, phenotypes consistent with Notch1 inhibition. The T-cell differentiation block was as profound as that produced by enforced expression of the Notch modulator Deltex1. In DNMAML1-transduced spleen cells, a dramatic decrease in MZB cells was present, consistent with Notch2 inhibition. In contrast, Deltex1 did not decrease MZB cell numbers. These results suggest a critical role for MAMLs during Notch-mediated cell fate decisions in vivo and indicate that DNMAML1, but not Deltex1, can be used to interfere with the function of multiple Notch family members.
منابع مشابه
HEMATOPOIESIS Mastermind critically regulates Notch-mediated lymphoid cell fate decisions
During lymphoid development, Notch1 plays a critical role in the T-cell/B-cell lineage decision, while Notch2 is essential for marginal zone B-cell (MZB) development. Notch pathway activation induces translocation of intracellular Notch (ICN) to the nucleus, where it interacts with the transcription factor CSL (CBF1/ RBP-Jk, Suppressor of Hairless, Lag-1). In vitro, ICN binds Mastermind-like pr...
متن کاملThe transcriptional coactivator Maml1 is required for Notch2-mediated marginal zone B-cell development.
Signaling mediated by various Notch receptors and their ligands regulates diverse biological processes, including lymphoid cell fate decisions. Notch1 is required during T-cell development, while Notch2 and the Notch ligand Delta-like1 control marginal zone B (MZB) cell development. We previously determined that Mastermind-like (MAML) transcriptional coactivators are required for Notchinduced t...
متن کاملAn Invitation to T and More Notch Signaling in Lymphopoiesis
Cell fate decisions in metazoans are regulated by Notch signals. During lymphoid development, Notch influences a series of cell fate decisions involving multipotent progenitors. This review focuses on current views and lingering uncertainties about Notch function in lymphoid cells.
متن کاملMastermind Mutations Generate a Unique Constellation of Midline Cells within the Drosophila CNS
BACKGROUND The Notch pathway functions repeatedly during the development of the central nervous system in metazoan organisms to control cell fate and regulate cell proliferation and asymmetric cell divisions. Within the Drosophila midline cell lineage, which bisects the two symmetrical halves of the central nervous system, Notch is required for initial cell specification and subsequent differen...
متن کاملDifferential effects of Drosophila mastermind on asymmetric cell fate specification and neuroblast formation.
During neurogenesis in the ventral nerve cord of the Drosophila embryo, Notch signaling participates in the pathway that mediates asymmetric fate specification to daughters of secondary neuronal precursor cells. In the NB4-2 --> GMC-1 --> RP2/sib lineage, a well-studied neuronal lineage in the ventral nerve cord, Notch signaling specifies sib fate to one of the daughter cells of GMC-1. Notch me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 104 6 شماره
صفحات -
تاریخ انتشار 2004